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Abstract: In this paper, the homotopy perturbation method (HPM) is employed to find 

solution of wave system in nℜ  with coupling controllers. The analytical  solution is 

calculated in the form of convergence power series with easily computable components. The 

homotopy perturbation method performs extremely well in terms of accuracy, efficiently, 

simplicity, stability and reliability. 

Keywords:  Padé approximation, Homotopy perturbation method, Wave equations. 

 

1. Introduction 

    This paper considers analytical solution of wave system in nℜ  with coupling controllers by 

using the homotopy perturbation method. The governing equation for the distributed 

parameter control problem can be modeled as follows: 
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with initial conditions 
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    Along with Eqs.(1)-(2), we employ the following homogeneous Dirichlet boundary 

condition as 
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Recently, Najafi [1] used Adomian decomposition method for solving the governing equation. 

In this paper, we will use HPM for this problem. The homotopy perturbation method (HPM) 

was first proposed by the Chinese mathematician Ji-Huan He  [2-5]. The essential idea of this 

method is to introduce a homotopy parameter, say  p, which takes values from  0  to 1. When  

p = 0,  the system of equations usually reduces to a  sufficiently simplified form, which 

normally admits a rather simple solution. As  p  is gradually increased  to  1, the system goes 

through a sequence of  ‘‘deformations’’, the solution for each of which is ‘‘close’’ to that at 

the previous stage of   ‘‘deformation’’. Eventually at   p =1,  the system takes the original 

form of the equation  and the final stage of  ‘‘deformation’’  gives the desired solution. One of 

the most remarkable features of the HPM is that usually just a few perturbation terms are 

sufficient for obtaining a reasonably accurate solution. This technique has been employed to 

solve a large variety of linear and nonlinear problems [6-22, 39-44]. The interested reader can 

see the Refs. [23-26, 31-36, 39-44] for last development of HPM. 

 2. Application of HPM 

    We would like to apply HPM to the system of linear partial differential equations, i.e., the 

system of waves in 2ℜ , the two-dimensional version of system (1)-(2) in Section 1. This 

problem is motivated by an analogous problem in ordinary differential equations for coupled 

oscillators and has potential application in isolating a vibrating object from the outside 

disturbances. For example, rubber or rubber-like materials can be used to either absorb or 

shield a structure from vibration. As an approximation, these materials can be modeled as 

distributed springs. For further applications of such a configuration, interested readers are 

referred to [27-29, 31-36]. 

     The dynamics of the system under consideration are governed by the following set of 

partial differential equations for coupled wave equations in Ω ⊂ 2ℜ  and boundary Ω∂ :  
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with initial conditions, 
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and Dirichlet boundary conditions, 
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   To solve equation by the homotopy perturbation method, we construct the following 

homotopy 

)],()([ 2

1 tttt uvuvlucpu −+−+∆= β                       (9) 

 

                                                                                  (10) 

 

Assume the solution of Eqs. (9)-(10) in the forms: 
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   Substituting Eqs.(11)-(12) into  Eqs. (9)-(10) and collecting terms of the same power of  p 

give 
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and  
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If we solve the above system of equations, we successively obtain 
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and so on; in this manner, the rest of the components of the homotopy perturbation series can  

 

be obtained. Then the series solutions expression by HPM can be written in the form: 
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So we obtain the series solutions 
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Similarly, 
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Now, in order to find a closed form solution for this system in (6), we apply the 

Aftertreatment Technique (AT) by Jiao in [30]  .To do this, applying the Laplace transform to 

the coefficients of )sin()sin( yx ππ  in (29) yields 
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For the sake of simplicity we let ξ1=s ; then (31) becomes 
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The use of Pade´ approximants shows real promise in solving boundary value problems in an 

infinite domain; see [24-26, 37, 38]. It is well known in the literature that polynomials are 

used to approximate the truncated power series and  tend to exhibit oscillations that may give 

an approximation error bounds. Moreover, polynomials can never blow up in a finite plane 

and this makes the singularities not apparent. To overcome these difficulties, the obtained 

series is best manipulated by Pade´ approximants for numerical approximations. Using the 

power series, isolated from other concepts, is not always useful because the radius of 

convergence of the series may not contain the two boundaries. It is now well known that 

Pade´ approximants have the advantage of manipulating the polynomial approximation into 

rational functions of polynomials. By this manipulation, we gain more information about the 

mathematical behavior of the solution. In addition, the power series are not useful for large 

values of x . It is an established fact that power series in isolation are not useful to handle 

boundary value problems. This can be attributed to the possibility that the radius of 

convergence may not be sufficiently large to contain the boundaries of the domain. It is 

therefore essential to combine the series solution with the Pade´ approximants to provide an 

effective tool to handle boundary value problems on an infinite or semi-infinite domain. 

Utilizing the Pade´ approximation [ ]
2
2 , to approximate (32) yields 
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Let s1=ξ , then (33) becomes 
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Finally, applying the inverse Laplace transform to (34) results in the following analytical 

approximate solution in the closed form for (6) in :2ℜ  
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Similarly,  
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3. Conclusion 

    In this paper, we used HPM to obtain analytical solution of wave system in nℜ  with 

coupling controllers. The method provides the solutions in the form of a series with easily 

computable terms. Unlike other common methods for solving physical problem, linear or 

nonlinear, that requires linearization, discretization, perturbation, or unjustified assumptions, 

that may slightly change the physics of the problem, the HPM finds approximate analytical 

solutions by using the initial conditions only. 
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